
Bucknell University Using ODE45 1 

Bucknell University Using ODE45 MATLAB Help 
 
MATLAB's standard solver for ordinary differential equations (ODEs) is the function ode45.  This 
function implements a Runge-Kutta method with a variable time step for efficient computation.  ode45 is 
designed to handle the following general problem 
 

 

€ 

dy
dt

= f(t,y) y(to) = yo [1] 

 
where t is the independent variable (time, position, volume) and y is a vector of dependent variables 
(temperature, position, concentrations) to be found.  The mathematical problem is specified when the 
vector of functions on the right-hand side of Eq. [1], 

€ 

f(t ,y) , is set and the initial conditions, y = yo at time 
to, are specified. 
 
The notes here apply to versions of MATLAB above 5.0 and cover the basics of using the function 
ode45.  For more information on this and other ODE solvers in MATLAB, see the on-line help. 
 
 
 
Contents: 
 

Syntax for ode45 ................................................................................................................................... 2 
Integrating a single, first-order equation ................................................................................................ 3 
Getting the solution at particular values of the independent variable .................................................... 4 
Using in-line functions ........................................................................................................................... 4 
Integrating a set of coupled first-order equations................................................................................... 5 
Integrating a second-order initial-value problem (IVP) ......................................................................... 7 
Integrating an Nth-order initial-value problem....................................................................................... 8 
Changing model parameters ................................................................................................................... 9 
Using anonymous functions ..................................................................................................................10 
Integrating a second-order boundary-value problem (BVP) ................................................................ 12 
Setting options in ode45 ...................................................................................................................... 14 
Going beyond ode45 ........................................................................................................................... 14 

 
 
Revised: August 2010 



Bucknell University Using ODE45 2 

Syntax for ode45 
 
ode45 may be invoked from the command line via 
 
 [t,y] = ode45(fname, tspan, y0, opts) 
 
where 
 
fname name of the function Mfile or inline function used to evaluate the right-hand-side 

function in Eq. [1] at a given value of the independent variable and dependent variable(s) 
(string (if Mfile) or inline object).  The function definition line usually has the form 
 
function dydt = fname(t,y) 
 
The output variable (dydt) must be a vector with the same size as y.  Note that the 
independent variable (t here) must be included in the input argument list even if it does 
not explicitly appear in the expressions used to generate dydt. The variable fname can 
contain the name of the Mfile as a string or fname may be a function handle generated by 
an inline or anonymous function. 
 

tspan 2-element vector defining the range of integration ([to tf]) though variations are 
possible. 

 
y0 vector of initial conditions for the dependent variable.  There should be as many initial 

conditions as there are dependent variables. 
 
opts a MATLAB structure variable (created by odeset) that allows you to control the details 

of computation (if you want to).  This argument is optional and, if not provided, ode45 
will use default values (see the examples below). 

 
t Value of the independent variable at which the solution array (y) is calculated.  Note that 

by default this will not be a uniformly distributed set of values. 
 
y Values of the solution to the problem (array).  Each column of y is a different dependent 

variable.  The size of the array is length(t)-by-length(y0) 
 
 
Specific examples of using ode45 now follow.  Mfiles for these examples are in the body of this 
document and should also be available in the folder that contains this document.  If you cannot find these 
file, just let me know (maneval@bucknell.edu) and I’ll send them along. 
 
 



Bucknell University Using ODE45 3 

Integrating a single, first-order equation 
 
The height of fluid in a tank (h(t)) whose outlet flow is dependent on the pressure head (height of fluid) 
inside the tank and whose inlet flow is a function of time may be modeled via the equation 
 

 

€ 

dh
dt

=α(t) − β h h(0) = ho  [2] 

 
Find the solution, h(t), for 

€ 

0 < t < 30 if the following values for the parameters are given. 
 
    Input flow: 

€ 

α( t) =10+ 4 sin(t)    

€ 

β = 2    

€ 

ho =1 
 
Step 1:  Identify 

€ 

f (t ,y)  and write a MATLAB function Mfile to evaluate it. 
 
In this case, we have time as the independent variable and the tank height as the (single) dependent 
variable.  Thus, we have 
 
 

€ 

f (t,y)→ f (t,h) =α(t) − β h  [3] 
 
From the given information for this problem, the required Mfile, named tankfill.m, is 
 
 function dhdt = tankfill(t,h) 
 % RHS function for tank-fill problem 
 
 A = 10 + 4*sin(t); % alpha(t) 
 H = 2*sqrt(h);   % beta*sqrt(h) 
 dhdt = A - H; 
 
 % eof - tankfill.m 
 
Step 2:  Use ode45 to solve the problem 
 
The initial condition has the height at 1 for t = 0 and we want to integrate until t = 30.  The following set 
of commands show explicitly how the solution is put together. 
 
 >> tspan = [0 30]; (integration range) 
 >> h0 = 1; (initial condition, h(0)) 
 >> [t,h] = ode45('tankfill',tspan,h0); (solve the problem) 
 
Step 3:  Look at the solution 
 
The solution can be viewed via the plot command as in 
 
 >> plot(t,h) 
 
The "curve" is a little choppy though it is accurate to the default relative tolerance (0.001).  Note that the 
places where the solution is given are not uniformly spread out.  See the next section for improving 
appearances. 
 
 
 
 



Bucknell University Using ODE45 4 

Getting the solution at particular values of the independent variable  
 
ode45 uses a variable-step-length algorithm to find the solution for a given ODE.  Thus, ode45 varies 
the size of the step of the independent variable in order to meet the accuracy you specify at any particular 
point along the solution.  If ode45 can take "big" steps and still meet this accuracy, it will do so and will 
therefore move quickly through regions where the solution does not "change" greatly.  In regions where 
the solution changes more rapidly, ode45 will take "smaller" steps.  While this strategy is good from an 
efficiency or speed point of view, it means that the solution does not appear at a fixed set of values for the 
independent variable (as a fixed-step method would) and sometimes the solution curves look a little 
ragged. 
 
The simplest way to improve on the density of solution points is to modify the input tspan from a 2-
element vector to an N-element vector via something like 
 
 >> tspan = linspace(to,tf,500)’; 
 
and use this new version in the input list to ode45. 
 
Smoother curves can also be generated by post-processing operations such as interpolation (spline 
interpolation usually works nicely).  For example, if you wanted a smoother result from the solution for 
the tank-fill problem, you might do the following 
 
 >> ti = linspace(tspan(1),tspan(2),300); (300 points - you could use more) 
 >> hi = spline(t,h,ti); 
 >> plot(t,h,’o’,ti,hi); 
 
The interpolated curve smoothes out the rough edges caused by simply connecting the data points (which 
is what plot does) and so makes the graph more appealing, in a visual sense. 
 
 
Using inline functions 
 
Sometimes you have a rather simple expression for the function 

€ 

f (t,y)  and it may be more trouble than 
it’s worth to create an Mfile to evaluate that function.  In such cases, the use of in-line functions can 
simplify things.  For more information on inline objects, see help inline. 
 
As an example of the use in in-line function, consider the following version of the tank-fill problem 
presented above: 
 

>> f = inline('10+4*sin(t)-2*sqrt(y)','t','y'); 
>> [t,y] = ode45(f,[0 30],1); 
>> plot(t,y) 

 
Note that the order of the input arguments is explicitly specified so that when you “look” at the object f, 
 

>> f 
f = 
     Inline function: 
     f(t,y) = 10+4*sin(t)-2*sqrt(y) 

 



Bucknell University Using ODE45 5 

you see that t (the independent variable) is the first input, as required by ode45 and other solvers.  If 
you do not specify the order, inline will rely on a default method of setting the order that may not be 
what you want. 
 
As long as 

€ 

f (t,y)  is simple (e.g., it does not require extra parameters or too many steps to evaluate), it’s 
probably pretty easy to use this approach. 
 
 
Integrating a set of coupled first-order equations 
 
Chemical-kinetics problems often lead to sets of coupled, first-order ODEs.  For example, consider the 
reaction network 
 
 

€ 

A↔B→C  [4] 
 
Assuming a first-order reaction-rate expression for each transformation, material balances for each 
species lead to the following set of ODEs: 
 

 

€ 

dA
dt

= −k1A + k2B

dB
dt

= k1A− k2B− k3B

dC
dt

= k3B

 [5] 

 
with the initial conditions, 

€ 

A(0) = Ao ,B(0) =Bo ,C(0) =Co .  Since the equations are coupled, you cannot 
solve each one separately and so must solve them simultaneously. 
 
The system in Eq. [5] can be put in the standard form for ode45 (Eq. [1]) by defining the vectors y, yo 
and f as 
 

 

€ 

y =

A
B
C

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

y(0) = y o =

Ao

Bo
Co

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

f(t ,y) =

−k1y1 + k2y 2
k1y1 −(k2 + k3 )y2

k3y2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 [6] 

 
Solving the system represented by Eq. [6] is a simple extension of what was done for solving a single 
equation.  We'll demonstrate the solution for the following situation 
 
 

€ 

k1 = 5 k2 = 2 k3 =1 Ao =1 Bo =Co = 0   
 
Step 1:  Write a function Mfile to evaluate the right-hand-side expression 
 
The primary difference here, compared to the single-equation case, is that the input variable y will be a 
vector.  The first element of y represents the concentration of species A at a time t, and the second and 
third elements representing the concentrations of species B and C, respectively, at the same time, t.  This 
ordering of variables is defined by Eq. [6].  There is no "right" order to the variables but whatever order 
you do choose, use it consistently.  We'll call the Mfile react.m.  It looks like this: 
 
 
 



Bucknell University Using ODE45 6 

 
function dydt = react(t,y) 
% Solve the kinetics example 
 
dydt = zeros(size(y)); 
 
% Parameters - reaction-rate constants 
 
k1 = 5;  k2 = 2;  k3 = 1; 
 
A = y(1);   We'll be explicit about it here though you can do 
B = y(2);   the calculations directly with the y-values. 
C = y(3); 
 
% Evaluate the RHS expression 
 
dydt(1) = -k1*A + k2*B; 
dydt(2) = k1*A - (k2+k3)*B; 
dydt(3) = k3*B; 
 
% eof - react.m 

 
Note that the input arguments must be t and y (in that order) even though t is not explicitly used in the 
function. 
 
Step 2:  Use ode45 to solve the problem 
 
No time interval is given so we'll pick one (0 to 4) and see what the solution looks like.  If a longer or 
shorter interval is needed, we can simply re-execute the function with a new value for the ending time.  
Following the outline for the single-equation problem, the call to ode45 is, 
 
 >> [t,y] = ode45('react',[0 4],[1 0 0]); 
 
Note that the initial condition is provided directly in the call to ode45.  You could also have defined a 
variable y0 prior to the call to ode45 and used that variable as an input. 
 
Take a moment to look at the outputs.  The number of points at which the solution is known is 
 
 >> length(t) 
 
Also consider the shape of the output variable y: 
 
 >> size(y) 
 
Is the result as stated above (i.e., is it length(t)-by-length(y0))? 
 
Step 3:  Look at the solution 
 
If you want to see the time-course of all species, use the command 
 
 >> plot(t,y) 
 
The blue line will be the first column of y (species A).  The green and red lines will be the second and 
third columns of y (species B and C, respectively). 



Bucknell University Using ODE45 7 

 
If you wanted to look at only one species (for example, species B), you would give the command 
 
 >> plot(t,y(:,2)) 
 
since the second column of y holds the information on species B. 
 
 
Integrating a second-order initial-value problem (IVP) 
 
A mass-spring-dashpot system can be modeled via the following second-order ODE 
 
 

€ 

˙ ̇ y + c ˙ y +ω 2y = g( t) y(0) = yo ,v (0) = ˙ y (0) = vo  [7] 
 
In this model, c represents a retarding force proportional to the velocity of the mass, 

€ 

ω2  is the natural 
frequency of the system and g(t) is the forcing (or input) function.  The initial conditions are the initial 
position (yo) and initial velocity (vo). 
 
ode45 is set up to handle only first-order equations and so a method is needed to convert this second-
order equation into one (or more) first-order equations which are equivalent.  The conversion is 
accomplished through a technique called "reduction of order".  We'll illustrate the solution for the 
particular set of conditions 
 
 

€ 

c = 5 ω = 2 y(0) =1 v (0) = 0 g( t) = sin(t)   
 
Step1:  Define the components of a vector 

€ 

p =[p1 p2]T  as follows: 
 

 

€ 

p1 = y
p2 = ˙ y 

 [8] 

 
Step 2:  Form the first derivatives of each of the components of p 
 
Using the given differential equation, we can write a system of first-order equations as 
 

 

€ 

˙ p 1 = ˙ y = p2

˙ p 2 = ˙ ̇ y = g( t)− c ˙ y −ω2y
= g(t) −cp2 −ω

2p1

 [9] 

 
In writing the expression for the second component, we've used the governing ODE (Eq. [7]). 
 
Step 3:  Cast the problem in the format needed to use ode45. 
 

 

€ 

˙ p = dp
dt

=
d
dt

p1

p2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

p2

g(t )− cp2 −ω
2p1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

f1 (t ,p)
f 2( t, p)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = f (t ,p)  [10] 

 
Step 4:  Collect the initial conditions into a single vector 
 

 

€ 

p(0) = po =
p1 (0)
p2 (0)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

y(0)
˙ y (0)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

yo

vo

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  [11] 



Bucknell University Using ODE45 8 

 
Step 5:  Apply ode45 to solve the system of equations 
 
The Mfile for the RHS function for this problem will be called spring.m.  Here it is: 
 

function pdot = spring(t,p) 
% Spring example problem 
 
% Parameters - damping coefficient and natural frequency 
 
c = 5;  w = 2; 
 
g = sin(t);    % forcing function 
pdot = zeros(size(p)); 
pdot(1) = p(2); 
pdot(2) = g - c*p(2) - (w^2)*p(1); 
 
% eof - spring.m 

 
The call to ode45 is, for a solution interval of 0 to 20, 
 
 >> p0 = [1 0];    (initial position and velocity) 
 >> [t,p] = ode45('spring',[0 20],p0); 
 
Step 6:  Look at the results 
 
If you wanted to look at only the displacement, you'd want to look at the first column of p (see the 
definition of p in the first step, Eq. [8]).  Hence, you would give the command 
 
 >> plot(t,p(:,1)) 
 
An interesting plot for these sorts of problems is the phase-plane plot, a plot of the velocity of the mass 
versus its position.  This plot is easily created from your solution via 
 
 >> plot(p(:,1),p(:,2)) 
 
Phase-plane plots are useful in analyzing general features of dynamic systems. 
 
 
Integrating an Nth-order initial-value problem 
 
To use ode45 to integrate an Nth-order ODE, you simply continue the process outlined in the section on 
integrating a 2nd-order ODE.  The first element of the vector p is set to the dependent variable and then 
subsequent elements are defined as the derivatives of the dependent variable up to one less than the order 
of the equation.  Finally, the initial conditions are collected into one vector to give the format presented in 
Eq. [1]. 
 
For example, the 4th-order equation 
 

 

€ 

a d
4 y
dx4

+b d
3y
dx3

+ c d
2y

dx 2
+ d dy

dx
+ ey = 0  [12] 

 
would generate the first-order system 



Bucknell University Using ODE45 9 

 

 

€ 

d
dt

p1
p2
p3
p4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

p2
p3
p4

−(bp4 +cp3 + dp2 + ep1 ) / a

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 [13] 

 
which, along with an appropriate set of initial conditions would complete the set-up for ode45. 
 
 
Changing model parameters 
 
In all the examples given above, the parameter values were given specific variables in the Mfile used to 
evaluate the RHS function (the model of the system).  This is fine for one-shot cases and in instances 
where you don't anticipate a desire to change the parameters.  However, this situation is not fine where 
you want to be able to change the parameters (e.g., change the damping coefficient in order to see the 
result in a phase-plane plot).  One approach to changing parameters is to simply edit the file every time 
you want to make a change.  While having the advantage of simplicity, this approach suffers from 
inflexibility, especially as the number of parameters and as the frequency of the changes increase.  To get 
other parameters into the function, you need to use an expanded version of the syntax for ode45, one that 
allows “other” information to be provided to the derivative function when ode45 uses that function.  This 
is most easily seen by an example (and by reading the on-line help on ode45). 
 
Step 1:  Write the Mfile for the RHS function so that it allows more input variables.  The parameter list 
starts after the dependent variable and after a required input called flag. 
 
For this example, we will re-write spring.m so that c and w are given their values via the function 
definition line.  The altered Mfile is 
 

function pdot = spring2(t,p,flag,c,w) 
% Spring example problem 

 
% Parameters – c is the damping coefficient and  
%              w is the natural frequency 
 
pdot = zeros(size(p)); 
g = sin(t);    % forcing function 
 
pdot(1) = p(2); 
pdot(2) = g - c*p(2) - (w^2)*p(1); 
 
% eof – spring2.m 

 
Step 2:  Write a driver script that implements your logic and allows you to set values of the parameters for 
the problem. 
 
The script created here will do the following 
 
 1. Implement a loop that  
   a. asks for values of the parameters  
   b. solves the ODE 
   c. plots the phase-plane view of the solution 
 2. Exits if no inputs are given 



Bucknell University Using ODE45 10 

 
Certainly more sophisticated scripts are possible but this has the essence of the idea.  The script is called 
dospring.m and it is: 
 

%DOSPRING Interactive plotting of the phase-plane 
 
while 1    % infinite loop 
 
   C_SPRING = input('Damping coefficient [c]: '); 
    
   if isempty(C_SPRING)  % how to get out 
      break 
   end 
    
   W_SPRING = input('Natural frequency [w]: '); 
    
   [t,p] = ode45('spring2',[0 20],[1 0],[],C_SPRING,W_SPRING); 
    
   plot(p(:,1),p(:,2)) 
   title('Phase-plane plot of results') 
   xlabel('position') 
   ylabel('velocity') 
    
end 
 
% eos - dospring.m 

 
Note the additions to the call to ode45.  First, a placeholder for the “options” input is inserted (an empty 
array) so that “default” options are used.  Then, the parameters for the model are provided in the order 
that they appear in the definition line of the RHS function. 
 
Try the script out and modify it (e.g., you could add the frequency and/or amplitude of the forcing 
function as something to be changed). 
 
 
Using anonymous functions 
 
In evolving the way in which functions can be created and manipulated, MATLAB has developed the 
idea of a function handle.  When you created the in-line function in a previous portion of this tutorial, the 
output of the function inline was a function handle.  You didn’t really need to know what a function 
handle is.  Rather, you had a way to create a function handle (inline) and had a function that could work 
with a function handle as an input (ode45). 
 
Let’s change the tank-fill problem computation to include the ability to change the parameters 

€ 

α(t)  and 

€ 

β in Eq. 2.  The parameter 

€ 

α(t)  is a function of time (it describes some time-dependent input to the tank) 
while the parameter 

€ 

β  is a scalar (it characterizes the geometry of the output valve of the tank).  These 
are two different types of parameters for sure but you’d like to study this problem by varying both.  How 
do you do that?  The answer – an anonymous function. 
 
Start with the punch line.  You’d like to write the following command: 
 
 >> [t,h] = ode45(rhsfun,[0 tf],h0); (solve the problem) 
 



Bucknell University Using ODE45 11 

The goal is to make sure that the object rhsfun (which will be a function handle) has everything needed 
to evaluate the right-hand side function for the ODE. 
 
There are several ways one might make this work.  I’m going to approach it simply yet try and make it 
clear where you might make improvements of extensions – or apply the method to a problem of your 
own.   
 
As a first example, assume that the input function is a relatively simple expression, on for which an inline 
function might be a good match.  Thus, create 

€ 

α(t)  as before and assign a value to

€ 

β : 
 

a = inline('10 + 4*sin(t)','t'); 
b = 2; 

 
Then create a function handle for the right-hand side function using the anonymous-function syntax  
 

rhsfun = @(t,h) a(t)-b*sqrt(h); 
 
The syntax here is not the best (in my humble opinion) but you can get used to it – especially when it 
works for you.  To understand what’s going on here, let’s break this line down.  The @ operator (in this 
context) is the anonymous-function operator that creates a function handle (rhsfun) from the 
information that it finds to its right.  Hence, you should read the line generically as 
 

fhandle = @(<essential variable list>) <valid expression> 
 
The essential variables (t and h here) are enclosed in parentheses and are the variables in the expression 
that the function that uses this object (ode45 in this case) must provide in order to evaluate the expression 
(take a moment to let that sink in).  The expression that follows is any MATLAB expression that was 
valid at the time the handle was created (hence the need to define the inline function a before the 
anonymous function was defined). 
 
The function handle that is created can then be used according to the syntax of the essential variable list.  
For example, 
 

>> rhsfun(1,2) 
ans = 
   10.5375 

 
Note that all the details of how the inputs 1 and 2 are used within the handle are disguised.  You just need 
to provide them and the original definition of the expression (contained in the object rhsfun) does the 
work of sorting out how to do the evaluation. 
 
The solution to the problem can thus be compactly written as 
 
 >> tf = 30; (maximum time for solution to run) 
 >> h0 = 1; (initial condition, h(0)) 
 >> a = inline('10 + 4*sin(t)','t');  (define the input function) 
 >> b = 2; (the valve characteristic) 
 >> rhsfun = @(t,h) (a(t) - b*sqrt(h)); (define the RHS function) 
 >> [t,h] = ode45(rhsfun,[0 tf],h0); (solve the problem)  
 >> plot(t,h) (show results)  
 



Bucknell University Using ODE45 12 

As a final example of using anonymous function, let’s consider a case where the input is perhaps not so 
simple so that an inline function is just not going to cut it for computation.  In addition, you have a valve 
with more complex characteristics than just 

€ 

h .  No problem – you are still in business.  Assume that the 
RHS function could be computed by an Mfile you wrote that has the definition line 
 

function a = tankfun(t,h,p1,p2) 
 
In your function, p1 and p2 are parameters you set to make the function do what it needs to do (and that’s 
up to you and your function).  Then, an anonymous function will let you use your Mfile in the same way 
that the inline function was used previously.  To repeat the example from above, 
 
 >> tf = 30; (maximum time for solution to run) 
 >> h0 = 1; (initial condition, h(0)) 
 >> p1 = 2; p2 = 1;  (a parameter set for this problem) 
 >> rhsfun = @(t,h) tankfun(t,h,p1,p2); (define the RHS function) 
 >> [t,h] = ode45(rhsfun,[0 tf],h0); (solve the problem)  
 
Note that as long as all variables used in the expression (beyond those in the essential variable list) are 
valid when the line defining rhsfun executes, you have successfully “captured” the expression for the 
right-hand side in an easy-to-evaluate version, rhsfun(t,h). 
 
Variations on this theme abound.  What you do depends on the nature of the problem and the number of 
times you will use the model.  Just be sure to follow the rule that the expression contained in the 
anonymous function should be valid at the time of the creation of the function handle. 
 
 
Integrating a second-order boundary-value problem (BVP) 
 
ode45 was written to solve initial-value problems (IVPs).  Hence it cannot be (directly) used to solve, for 
example, the following problem derived from a model of heat-transfer in a rod: 
 

 
d2y
dx 2

− y = 0 y(0) = 1 dy
dx x =1

= 0  [14] 

 
since the value of the derivative at x = 0 is not specified (it is known at x = 1, though).  Equation [14] is a 
boundary-value problem (BVP) and is common in models based on transport phenomena (heat transfer, 
mass transfer and fluid mechanics). 
 
All is not lost because one way to solve a BVP is to pretend it is an IVP.  To make up for the lack of 
knowledge of the derivative at the initial point, you can guess a value, do the integration and then check 
yourself by seeing how close you are to meeting the conditions at the other end of the interval.  When you 
have guessed the right starting values, you have the solution to the problem.  This approach is sometimes 
called the "shooting method" by analogy to the ballistics problem of landing an artillery shell on a target 
by specifying only it's set-up (powder charge and angle of the barrel). 
 
Step 1:  Set up the problem so that ode45 can solve it 
 
Using the approach of turning a second order equation into a pair of coupled first-order equations, we 
have 
 



Bucknell University Using ODE45 13 

 

€ 

d
dx

p1
p2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

p2
p1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ p(0) =

1
v
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  [15] 

 
where v has been used to represent the (unknown) value of the derivative at x = 0.  The Mfile used to 
evaluate the RHS is as follows 
 

function dpdx = hotrod(x,p) 
% Hot-rod problem illustrating the shooting method 
 
dpdx = zeros(size(p)); 
 
dpdx(1) = p(2); 
dpdx(2) = p(1); 
 
% eof - hotrod.m 

 
Step 2:  Guess a value of the initial slope and integrate to x = 1 
 
The problem will be iterative so it's not likely that the first guess will be right.  From the physics of the 
problem, the end of the rod (at x = 1) will be colder than the place we are starting from (x = 0) and so 
we'll guess a negative value for the initial slope. 
 
 >> v = -1; 
 >> [x,p] = ode45('hotrod',[0 1],[1 v]); 
 
The value of the derivative at x = 1 is the last value in the second column of p (why?).  Thus, we can 
check the accuracy of the first guess via 
 
 >> p(length(x),2) 
 
which I found to be -0.3679.  That’s too low (it should be zero). 
 
Step 3:  Iterate until the boundary condition at x = 1 is met 
 
You can use brute force here if you have only one problem or you could finesse it by hooking the whole 
thing up to fzero and have fzero do the guessing.  Here are my brute-force results: 
 
 Value of v Slope at x = 1 
 -1.0 -0.3679 
 -0.5 -0.4037 
 -0.75 -0.0179 
 -0.76 -0.0025 
 
The trend is obvious and so the initial slope is around -0.76 (the exact value is -tanh(1) = -0.7611...).  
Using fzero would be a good alternative if this problem were to be solved many times over. 
 
 
Step 4:  Look at the results 
 
Even though we are guessing the initial slope to solve the problem, it is the solution, y(x), that we are 
really interested in.  This solution is in the first column of p and may be viewed via 
 
 >> plot(x,p(:,1)) 



Bucknell University Using ODE45 14 

 
If BVP’s are a serious part of your computational problem, you should have a look at bvp4c.  
 
 
Setting options in ode45 
 
The input opts is a MATLAB structure variable that con be used to control the performance of the 
various ODE-solvers in MATLAB.  The most common option that you’ll likely want to alter is the 
accuracy to which solutions are computed.  To make this process easy, a pair of functions are available – 
odeset for creating and changing options and odeget for displaying information on options.  To see 
what the current settings are, try the command 
 
 >> odeset 
 
Default values for any setting are denoted by the braces, {}. 
 
MATLAB uses two accuracy measures for solving ODEs – the relative tolerance (RelTol in opts) and 
the absolute tolerance (AbsTol in opts).  Each step in the integration is taken so that it satisfies the 
condition 
 

  

€ 

Error at step j ≤max
k
(RelTol ⋅ y jk ,AbsTolk )  

 
where the subscript k ranges over all the components of the solution vector at time step j.  To alter the 
default settings, use commands such as 
 
 >> oldOpts = odeset; 
 >> newOpts = odeset(oldOpts,’RelTol’,1e-6) 
 
Information on the settings for the other options is available in the on-line help. 
 
 
Going beyond ode45 
 
The solver ode45 is not the be-all and end-all of ODE-solvers.  While ode45 should be your first choice 
for integration, there are problems that the function performs poorly on or even fails on.  In such cases, 
there are fallback solvers that are available.  All these solvers use the same syntax as ode45 (see page 2) 
but have options for handling more difficult or sophisticated problems. 
 
Here are some suggestions for handling non-standard ODE problems: 
 

• If accuracy you desire is not obtainable via ode45, try the function ode113.  This solver uses a 
variable order method that may be able to improve over what ode45 does. 

 
• If ode45 is taking too long to compute a solution, your problem may be “stiff” (i.e., it involves a 

system with a wide range of time constants).  Try the function ode15s. 
 
• If your system of equations has the form 
 

€ 

M dy
dt

= f( t,y)  

 



Bucknell University Using ODE45 15 

where M is a (typically non-singular) matrix, try the function ode15s. 
 

• In newer versions of MATLAB, the function bvp4c is available for solving boundary-value 
problems. 
 

You’ll find more information on these functiona in the on-line help and documentation.  For example, try 
the on-line function reference (available through the command helpdesk) on any of the solvers noted 
above. 
 


