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Chapter 6

Macroscopic Balances

6.1 Conservation of Mass

The integral expression for the mass balance over a general control volume is given by

f_[mﬂ(v'll) dA-l—(—aa—t/‘/-/;v‘pdeﬂ (6.1)

where the first integration is carried out over the control surface and it represents the
net rate of mass efflux from the control volume. The second integration is carried out
over the control volume and it represents the rate of accumulation of mass within the
control volume. p is the density of fluid flowing through differential control volume dV

and leaving/entering through a differential control surface dA with velocity v where the

(outward) unit normal to the surface is n.

Note that v-n = |v||n| cos§ where 8 is the angle between the velocity vector, v, and the
outward directed unit normal vector, n, to dA. Thus if both v and n 'c'u'e. in the same
direction (# = 0) then v n = |v||n| = |v| and if v and n are facing in the opposite
direction (f = 180) then v-n = —|v||n| = —|v|, where |v] is simply the magnitude of

the velocity vector at that location.
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If flow is steady relative to coordinates fixed to the control volume, then the accu-

mulation term will be zero. Thus, for this situation the above equation reduces to

‘/.‘/” p(v-n) dA=10 (6.2)

Consider the steady one-dimensional flow into and out of a control volume as shown in

Figure 6.1.
Yy
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Flow in A v
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Figure 6.1: Steady one-dimensional low into and out of a control volume.

In this case the above equation becomes

/fmp(v-n) dA:ffAl”(v'n) dAJ“f/Agp(v-n) dA =0
f_/c_s.P(v-n) CEA——-—/jAlpv dA+f[42pu dA =10

or

ar simply
,Ul'U'IA]_ = PQ'UQAQ (63)
If the fluid is incompressible with a constant density p then the above equation becomes

mA = vads (5-4)
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Example-1: Consider a tank having cross sectional area A initially filled with a fluid of
density p upto height /i, as shown in Figure 6.2. At ¢ = 0 the bottom tube having cross

sectional area a is opened. Determine how the height, A(%), of fluid in the tank changes

with time.

»

Iy

Figure 6.2: Flow in a tank opened at the bottom.

Writing B.E. between paints (1) and (2) as shown in the control volume
1, 1,
Pr+ 5001 + pgz1 = pa + 5PY2 + P9z

In this problem p; = p; = Doms 21 = A(t), 22 = 0 and v, << v, which is 1 valid

assumption if o << A. Thus we can set v; = 0. Then the above equation gives

Vg = +/ Egh(t)

Applying Equation (6.1) for the control volume shown we get

/l.p(v-n) dA+%f/‘£v_pdV=U

—// pvdA—l—// pvdA—l—g-/// pdvV =0
Ay An at c.v.
f/ UdA+Q'/// dV =10
As at JJJ... B
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va(a) + i(V) =0

V29h(t){a) -+ = MMW

where a = £./2g. Integrating the above equation between the limits: ¢ =0, h = hg and

t =1, h = h(t) we get
h(t) d.h.
— =—n f dt
ho
h(t)

zﬁﬁq = —at

VaE) = Vo =

or
\/h@)zzyﬁﬁ-%i

The above expression is the desired expression. From this we can see that the height of
fiuid decreases from initial height hq as time passes and eventually the tank is completely

empty. We can determine the corresponding time, 7, by setting h(t) = 0 in the above

expression. This gives

U=%Vﬁ
where o = %./2g.
Example-2:
A tank with a square base of side S is open to the atmosphere and it is being filled
with water through a pipe of diameter d in which the water velocity is v,,. Water seeps

through the porous bottom of the tank with velocity vy, given by the equation
K
Vg = ; (p - pa.)

where , ¢ and p denote permeability of the tank bottom, viscosity of the water and

pressure inside the tank at the bottom, respectively. Derive an expression to describe
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the variation of water level in the tank, A, with time, if the level at time ¢ = 0 is 4. For

the purpose of calculating pressure p, liquid in the tank may be considered static.

h(t)

VI IIIITIIITITI I
e

Yo

Figure 6.3: Flow in a tank with porous bottom.

Applying Equation (6.1) for the control volume shown we get

ffmp(v.'n) dA—i—%/f/ pdV =0
fLIpUdA+f[42pvdA+ fff pdV =10

d2+ (p P.)S? + ( --O

'w ﬁ

Note that the fluid is incompressﬂ)le hence p is treated as a constant. Pressure p at the

bottom of the tank at any time t is given by

P = pgh(t) + p,

Substituting this in the above equation and rearranging gives

db _ 7 E)z,u INCIAN
dt  4\§) 'upg



dh
- = alf—h) (6.5)

where

5 T (d\> L
Q= EPQ, p= 1 (g) vi"ra_pg (6.6)

Separation of variables in Equation (6.5) gives

dh
m = vt

which upon integration between the limits from ¢t = 0, h = hg to t = ¢, h = h{t) gives
B—h ]
—In =t
=

B—h=(8— ho)e ™
h(t) = B — (B — ho)e™®

which becomes

This is the desired expression for At} where @ and 3 are given by Equation (6.6).

6.2 Conservation of Momentum

The integral expression for the linear-momentum balance over a general control volume

Zsz/mvp(v-n) dA—l—%fffmpv dv (6.7)

where Y F represents the total force acting on the control volume. The total force act-

is given by

ing on the control volume consists both of surface forces due to interactions between the
control-volume fluid, and its surroundings through direct contact, and of body forces
resulting from the location of the control volume in a force field. The gravitational field
and its resultant force are the most common example of this later type. The first inte-

pration on the right side in Equation (6.7) is carried out over the control surface and it
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represents the net rate of momentum efflux from the control volume. The second inte-
gration is carried out over the control volume and it represents the rate of accumulation
of linear momentum within the contral volume. p1s the density of fluid flowing through
differential control volume dV and leaving/entering through a differential control surface

dA with velocity v where the (outward) unit normal to the surface is n.

Note that v-n = |v||n| cos§ where § is the angle between the velocity vector, v, and the
outward directed unit normal vector, 1, to dA. Thus if both v and 1 are in the same
direction (6 = 0) then v-n = |v||n| = |v| and if v and n are facing in the opposite
direction (§ = 180) then v -n = —|v||n| = —|v|, where |v| is simply the magnitude of

the velocity vector at that location.

Note that Equation (6.7) is a vector equation as opposed to Equation (6.1) which is
a scalar equation. In rectangular coordinates the single-vector equation (6.7) may be

written as three scalar equations

ZF =f/;a.'ump(v‘n) dA—%-gE/]]mpvz dv | (6.8)
ZFI’:/IE_U”’O(V'H) ciA-{-a%f//mpvy dv (6.9)
ZFzzi/vazp(v-n) ﬂ!A—f—%f/[“pvz dv (6.10)

When applying any or all of the abave equations, it must be remembered that each term
has a sign with respect to the positively defined T,%, and z directions. The determina-
tion of the sign of the surface integral should be considered with special care, since both
the velocity vector component (vz) and the scalar product (v-n) have signs as explained
before. The combination of the proper sign associated with each of these terms will give
the correct sense of the integral. It should also be remembered that since Equations
(6.8) to (6.10) are written for the fluid in the control volume, the forces to be employed

in these equations are those acting on the fluid.

If flow is steady relative to coordinates fixed to the control volume, then the accu-
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mulation term will be zero. Thus, for this situation the Equation (6.7) reduces to

> F= [fmvp(v-n) dA (6.11)

Example-3:
Water flows steadily through the horizontal 30° pipe bend as shown in Figure 6.4. At
station 1 the diameter is 0.3 m, the velocity is 12 m/s, and the pressure is 128 kPa gage.

At station 2 the diameter is 0.38 m and the pressure is 145 kPa gage. Determine the
forces F; and F, necessary to hold the pipe bend stationary.

L™

Flow out

Flow in

@

Figure 6.4: Flow in a pipe bend.

Ay = %D% = 0.0707 m?

Ay = gpg = 0.1134 m?

Using Equation (6.4) one can determine velocity v,

Ay

U ':4".";
0.0707
2__._

0.1134
= 748 m/s

Uy =
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At steady state Equation (6.8) gives

F, + PRA — PgA; cos B = vy p(—1)A; + vap(vy cos ) A,
FI = —PlAl + PgAg cosf — ’U]_,D('Ul)Al + 'Ug,O('Uz CQOs H)Ag
= —(128 x 10%)(0.0707) + (145 x 10°)(0.1134) cos 30

—(12)(10%)(12)(0.0707) + (7.48)(10%)(7.48 cos 30)(0.1134)
= 505.5 N

Similarly, at steady state Equation (6.9) gives

By — W — PyAssind = vyp(vg sin 8) As

Fy = W -+ PyAgsinf + vyp(vy sin 0).As
= W+ (145 x 10%)(0.1134) sin 30 + (7.48)(10%)(7.48 sin 30) (0.1134)
= W+11395 N

where W is the weight of water contained within bend.

6.3 Conservation of Energy

‘The integral expression for the conservation of energy over a general control volume is

given by

0Q W, | P a 5W,
& d _/L. (e—!— JrJ)p(v n) dA+6tff/m6p dV - p (6.12)

where §¢) and §W; represent differential heat transfer and the shaft work which is that

done by the contro! volume on its surroundings that could cause a shaft to rotate or
accomplish the raising of a weight through a distance, respectively. 8@ is positive when
heat is added to the system, 6W, is positive when work is done by the system.

The quantity e is the specific energy or the energy per unit mass. The specific energy
includes the potential energy, gy, due to the pasition of the fluid continuum in the Erav-

itational field; the kinetic energy of the fluid, v?/2, due to its velocity; and the internal
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energy, u, of the fluid due to its thermal state.
Term §W,/dt, represents the work rate accomplished in overcoming viscous effects at

the control surface. Note that this constitutes both the work associated with the viscous

portion of the normal stress and the shear work.
Example-4: Consider the system shown in Figure 6.1 under the conditions of steady

fluid fiow and no frictional losses. For the specified conditions the overall energy expres-

sion, Equation (6.12) becomes

The specific energy, €, may be expanded to include the kinetic, potential, and internal

energy contributions to give

p v? P
e+ —=gy+ - +u+—
7 2 p

Thus the surface integral becomes

P 2 P

ff (3 + —) p(v-n)dd = [11_2 + Y2 + us + —2} (P20 As)
ca. J2 2 P2
V2 P

[31 + g1+ ug -k ““1‘} (P11 Aq)
P

The energy expression for this example now becomes

5Q W, _ (v
dt dt |2

F
+ gya + us + p—ﬂ] (pavaAs)
2

’U% P1
- g tmtu + rs (p1v14;) (6.14)
1

Equation (6.3) says
pru1 Ay = pavgAg = 1h

where 77 is the mass flow rate. If each term in Equation (6.14) is divided by 7, we have

g W, _[% B _ [ B
oS —[2+gy2+u:z+p2] [2+gyl+u1+

m

or, in more familiar form

v? v2
71+gy1+h1+ 1.2

”5
2 + he + —2 6.15
: 5 + gya + hs : ( )
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where the sum of the internal energy and flow energy, u+ P/p, has been replaced by the
enthalphy, s, which is equal to the sum of these quantities by definition h = u + P/p.

Example-5: A shaft is rota;{;ing.at constant angular velocity w in the bearing shown in
Figure 6.5. The shaft diameter is d and the shear stress acting on the shaft is 7. Find
the rate at which energy must be removed from the bearing in order that the lubricating
oil between the rotating shaft and the stationary bearing surface remains at constant

temperature. The shaft is assumed to be lightly loaded and concentric with the journal.

Figure 6.5: Bearing and conirol volume for bearing analysis.

"The control volume selected consists of a unit length of the fluid surrounding the shaft

as shown in Figure 6.5. From the figure we may observe the following:

e No fluid crosses the control surface.
e No shaft work crosses the control surface.

s The flow is steady.
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Under these conditions Equation (6.12) reduces to

5Q _ oW,

dt  dt
Note that 6W, constitutes both the work associated vvitﬁ the viscous portion of the
normal stress, §W,, and the shear work, §W,. In this example there is no contribution
from the normal stress. Hence, §W, = dW,. In this case all of the viscous work is
done to overcome shearing stresses; thus the viscous work is = [[ 7(v-e;)dA. At
the outer boundary, v = 0 and at the inner boundary [f +(—v)(4) = —r(wd/2)rd,
where e, indicates the sense of the shear stress, 7, on the surroundings. The resulting

sign is consistent with the concept of work being positive when done by a system on its

surrounding. Thus
0Q _ wdin

dt 2
which is the heat transfer rate required to maintain the oil at a constant temperature.

If energy is not removed from the system then §@/dt = 0, and

) W,
’éiff/ e dV =g

As only the internal energy of the oil will increase with respect to time

a D? — d*\ du W, rd®
5[//&‘,6‘“&‘;_”( 1 )d_t”“ i YT

or, with constant specific heat, ¢

dl 2rwd?
O —

dt  p(D? - d?)
where D is the outer bearing diameter.

In this example the use of the viscous-work term has been illustrated. Note that

¢ The viscous-work term involves only quantities on the surface of the control vol-

ume.

o When the velocity on the surface of the control volume is zero, the viscous-work

term is zero.
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6.4 The Bernoulli Equation

Under certain flow conditions Equation (6.12) applied to a control volume reduces to an
extremely useful relation known as the Bernoulli equation. Consider the control volume
shown in Figure 6.6 in which flow is steady, incompressible, and inviscid, and in which

no heat transfer or change in internal energy occurs. Under these conditions Equation

Figure 6.6: Control volume for steady, incompressible, inviscid, isothermal flow.

NAS =

v: P v P
0= (gyz + -23 -+ ?2) (puaAg) — (gyl i ST Fl) (pv1A;)

(6.12) reduces to

ar

2
From Equation (6.4)

'U1A1 = 'U2A2

which may be divided through to give

2 2
Ll 2422 6.16
gty + gt 5+ (6.16)
Dividing through by g, we have
2 P v P
T L S U P R (6.17)
29 pg 29 pg
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Either of the above equations is designated the Bernoulli equation.

Note that each term in Equation (6.17) has the unit of length. The quantities are
often designated “heads” due to elevation, velocity, and pressure, respectively. These
~ terms, both individually and callectively, indicate the quantities which may be directly

converted to produce mechanical energy.

Note that Bernoulli eguation has the followihg limitations
o Inviscid flow.
o Steady flow.

¢ Incompressible flow.

o The equation applies along a streamline.



